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Abstract Lightning is one of the most important sources of upper tropospheric NOx; however, there is a
large spread in estimates of the global emission rates (2–8 Tg N yr�1). We combine upper tropospheric
in situ observations from the Deep Convective Clouds and Chemistry (DC3) experiment and global
satellite-retrieved NO2 tropospheric column densities to constrain mean lightning NOx (LNOx) emissions
per flash. Insights from DC3 indicate that the NOx lifetime is ~3 h in the region of outflow of
thunderstorms, mainly due to production of methyl peroxy nitrate and alkyl and multifunctional
nitrates. The lifetime then increases farther downwind from the region of outflow. Reinterpreting
previous analyses using the 3 h lifetime reduces the spread among various methods that have been
used to calculate mean LNOx emissions per flash and indicates a global LNOx emission rate of
~9 Tg N yr�1, a flux larger than the high end of recent estimates.

Plain Language Summary Lightning is an important source of upper troposphere nitrogen oxides;
however, there is high uncertainty in the amount of nitrogen oxides produced from lightning. Using recent
updates in upper tropospheric nitrogen oxides chemistry, this study decreases this uncertainty from a
factor of 4 to less than a factor of 2 and shows that the amount of nitrogen oxides produced from lightning
should be higher.

1. Introduction

In recent analyses, emissions of NOx (NOx ≡ NO + NO2) from lightning have been estimated to be in the range
of 2–8 Tg N yr�1, representing ~10% of the global and ~80% of the middle to upper tropospheric NOx source
(Murray, 2016; Schumann & Huntrieser, 2007). Systematic variations in convectively available potential
energy (CAPE), wind shear, and flash length have been suggested as mechanisms driving variability in
emissions (Schumann & Huntrieser, 2007). However, observations have not established which of these
mechanisms control mean lightning NOx (LNOx) emission rates per flash (Hudman et al., 2007; Martin et al.,
2007; Schumann & Huntrieser, 2007). The LNOx emission range can lead to at least a 15% difference in
globally modeled tropospheric O3, as estimated by Labrador et al. (2005), and up to a 60% increase in tropical
O3 (Liaskos et al., 2015).

Two methods are typically employed to estimate mean LNOx emission rates per flash. The first method
emphasizes the near field of convection and uses observations from either in situ or space-based platforms.
These studies are typically based on the idea that the NOx lifetime in the upper troposphere (UT) is long (2–
8 days); using this assumption, the observations are directly converted to total NOx emitted without an
adjustment for chemical loss prior to measurement. The NOx measurements are combined with the
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number of lightning flashes observed in each of these individual events to yield the emission rate in units of
mol NO flash�1 (Beirle et al., 2010, 2004; Bucsela et al., 2010; Huntrieser et al., 2007, 2009, 2011; Miyazaki et al.,
2014; Pickering et al., 2016; Pollack et al., 2016). The second method uses in situ or space-based measure-
ments in the far field to constrain a chemical transport model. The emission rate of NO from lightning is
varied until the simulations broadly agree with measurements of NO2, HNO3, and/or NOy

(NOy = NO + NO2 + PAN + CH3O2NO2 + HO2NO2 + alkyl and multifunctional nitrates + HNO3 +…).
Estimates of mol NO flash�1 are typically higher in far-field studies compared to near field, and both meth-
ods fail to accurately simulate the measured ratio of NOx to HNO3 (Allen et al., 2010, 2012; Fang et al., 2010;
Hudman et al., 2007; Jourdain et al., 2010; Martini et al., 2011).

Here we largely resolve these conflicting interpretations of LNOx. Recent improvements in our understanding
of UT chemistry alter the relationships between near- and far-field concentrations of nitrogen oxides. We find
that (1) the lifetime of NOx in the near field of convection is much shorter than previously assumed (~2–3 h),
reducing the downwind burden of NOx relative to the magnitude of the emissions and, consequently, (2) that
global LNOx emissions are approximately 9 Tg N yr�1—a value above the higher end of recent estimates.

2. Methods

We briefly describe the model and observations used in this study, and further details about the model and
observations can be found in the supporting information.

Airborne observations from the Deep Convective Clouds and Chemistry (DC3) experiment were used in the
analysis (Archive, 2014; Barth et al., 2015). Briefly, the NASA DC-8 aircraft sampled fresh and chemically aged
LNOx emissions over the continental United States, between May and June 2012. The details of the observa-
tions from the NASA DC-8 aircraft observations are described in the supporting information and include NO,
NO2, methyl peroxy nitrate (CH3O2NO2), alkyl and multifunctional nitrates, HNO3, O3, and water vapor
(Crounse et al., 2006; Day et al., 2002; Diskin et al., 2002; Nault et al., 2015; Ryerson et al., 1999; Talbot et al.,
1997; Thornton et al., 2000). Descriptions of how the observations were filtered to match the chemical trans-
port model can be found in the supporting information (Bertram et al., 2007; Cooper et al., 2014; Henderson
et al., 2011; Hudman et al., 2007). Also, a discussion of the positive interference of thermally decomposed
CH3O2NO2 and pernitric acid on in situ UT NOx observations from prior studies can be found in the support-
ing information (Browne et al., 2011; Nault et al., 2015).

The Ozone Monitoring Instrument (OMI) aboard the NASA Aura satellite is used to extend the observations,
globally, for the year 2012 (Levelt et al., 2006). There are currently two products for global NO2 column densi-
ties for OMI—the NASA Standard Product 2 (SP v2) (Bucsela et al., 2013) and the Dutch OMI NO2 (DOMINO)
Product (Boersma et al., 2011a, 2011b). For both, the Level 2 products were used to constrain LNOx emissions
around the world; the observations are matched to GEOS-Chem grid cells as described in the supporting infor-
mation. Description of the air mass factor can be found in the supporting information (Boersma et al., 2002).

Finally, GEOS-Chem version 9-02 (http://geos-chem.org) (Bey et al., 2001) was used at 2° × 2.5° resolution. The
standard chemistry, e.g., Sander et al. (2011), and model is described by Mao et al. (2013). Various changes to
the chemical kinetics were analyzed (Table S1), and further details about GEOS-Chem can be found in the
supporting information.

As a special note, we used the vertical distribution of LNOx emissions recommended by Pickering et al. (1998).
This profile was chosen since recent studies (Allen et al., 2012; Seltzer et al., 2015) conclude that the Ott et al.
(2010) profile places too much NOx in the middle troposphere and not enough NOx in the UT.

3. Results
3.1. The Lifetime of NOx

Our analysis begins by analyzing the impact of advances in our understanding of CH3O2NO2 (Browne et al.,
2011; Nault et al., 2015), HO2NO2 (Bacak et al., 2011; Nault et al., 2016), and dinitrogen pentoxide, N2O5 (Evans
& Jacobs, 2005; Brown et al., 2009) and the reaction of OHwith NO2 to produce HNO3 at the temperatures and
pressures characteristic of convective outflow and the UT (Henderson et al., 2012; Nault et al., 2016) in the
GEOS-Chem chemical transport model (Bey et al., 2001). Although, alkyl and multifunctional nitrates (ANs)
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are known to play an important role in removing NOx in the outflow of convective systems (Apel et al., 2012;
Nault et al., 2016), no updates to AN chemistry were added because the impact of ANs is subgrid scale in this
modeling framework. As discussed later, we evaluate the impact of neglecting their formation post hoc.

GEOS-Chem is used to calculate NOx and HNO3 mixing ratios and tropospheric NO2 column densities
(tVCDNO2). Evaluations of the changes to the chemical kinetics individually (Figures S1–S3) show that
CH3O2NO2 chemistry creates an additional sink for NOx, reducing the chemical lifetime of UT NOx and redu-
cing the tVCDNO2 and the UT HNO3. The effect of CH3O2NO2 on NOx concentrations and tVCDNO2 is partly
balanced by the revised low temperature and low-pressure rate of the reaction of NO2 with OH, which results
in an increase in the NOx lifetime and, thus, higher NOx concentrations and tVCDNO2. This change to the low
temperature HNO3 source reinforces the effect of CH3O2NO2 on UT HNO3, as it also results in reduced HNO3.
The changes to HO2NO2 and N2O5 chemistry are included for completeness, but they had little effect on this
analysis. Overall, even with the slower formation rate of HNO3, the UT NOx lifetime is reduced compared to
the previously assumed 2–8 days (Schumann & Huntrieser, 2007).

These model results are consistent with observations, as further discussed in section 3.2. For example, in the
near field, Nault et al. (2016) found that CH3O2NO2 and ANs accounted for ~70% of the NOx loss, whereas
HNO3 accounted for ~15% of the NOx loss. Combining all the recent updates, the UT NOx day time lifetime,
inferred from the photostationary steady state described in Nault et al. (2016) and observations, is ~3 h near
thunderstorms (i.e., < 6 h chemical aging) (Nault et al., 2016). After ~6 h chemical aging and dilution, the
highly reactive hydrocarbons and HOx precursors are reduced below other factors controlling the NOx

lifetime (Apel et al., 2012; Bertram et al., 2007; Fried et al., 2008), with the effect that the UT NOx lifetime away
from thunderstorms is ~0.5–1.5 days (Nault et al., 2016). Thus, LNOx is rapidly lost to chemical removal in the
near field of thunderstorms, but remnant NOx plumes can still be observed up to 1–2 days after a storm
(Figure S4).

3.2. Effects of Updated Chemistry on Interpretation of Near-Field Studies

Determination of the mol NO flash�1, using near-field analyses of NOx or NO2 concentrations, requires that
the loss of NOx between emission and measurement be accounted for. These analyses typically assume that
the UT NOx lifetime is controlled by dilution and production of HNO3 through the reaction of OH with NO2,
with values for the lifetime of NOx in the range 2–8 days (Schumann & Huntrieser, 2007). We find that a much
shorter lifetime, ~2–3 h, is consistent with in situ observations and the revised model (Nault et al., 2016). As a
result, much more NOx is likely being converted to higher oxides between emission and measurement than
was previously recognized, leading to underestimation of the mol NO flash�1.

Prior to applying this analysis to previous studies, we investigate the impact of the thermal decomposition of
CH3O2NO2 and HO2NO2 on near-field, in situ LNOx measurements. We evaluate the maximum bias to NOx

from the thermal decomposition of these species during in situ sampling, using observations from the DC3
21 June 2012 flight. The chemical evolution of the near-field LNOx emissions observed during this flight
has been discussed in detail by Nault et al. (2016). For the UC Berkeley instrument and instruments with simi-
lar inlet design and exposure to warm cabin temperatures before measurement, at maximum, 5% of HO2NO2

would thermally decompose (Nault et al., 2015), leading to a positive bias of 3 parts per trillion by volume
(pptv) in NO2 and less than 1% bias in NOx; thus, this compound is ignored for this discussion. In contrast,
we assume full decomposition of CH3O2NO2, as this molecule rapidly and completely dissociates to NO2

and CH3O2
∙. Figure 1a shows that the thermal decomposition of CH3O2NO2 would lead to an average ~ 7%

positive bias in NOx for the 21 June flight.

To demonstrate the impact of the shorter lifetime, we apply a post hoc correction to previous studies around
the globe (Huntrieser et al., 2009; Schumann & Huntrieser, 2007). We assume that first-order kinetics
(equation (1)) apply to the chemical conversion of lightning-emitted NOx to higher oxides. We use this
equation to extrapolate the moles of NO emitted at time t = 0, the time the lightning flashes were recorded,
by the lightning flash from the measurement downwind at time t. The lifetime, τ, inferred from GEOS-Chem
and observations by Nault et al. (2016) of ~3 h is used to solve for the initial value of emissions.

mol NO flash�1 tð Þ ¼ mol NO flash�1 0ð Þ � e�t=τ (1)
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Applying equation (1) to the DC3 flight from 21 June 2012, the average NOx calculated for t = 0 is ~1200 pptv
(Figure 1b). For other prior studies that measured in situ NO2 along with NO, instead of calculating photosta-
tionary steady state NO2, the apparent lifetime of NOx could increase from 3 h to ~4.5 h if decomposed
CH3O2NO2 is not subtracted after measuring NO2. This increase in apparent NOx lifetime is due to measuring
a NOx sink, CH3O2NO2, as NO2 and CH3O2NO2 accounts for ~50% of the NOx loss during the 21st June flight.
For this flight, if CH3O2NO2 was measured as NO2, but a 3 h lifetime is still assumed, the t = 0 NOx is
~1350 pptv, ~13% too high (Figure 1b). Assuming a 4.5 h lifetime instead, to account for the inclusion of
CH3O2NO2 in the measurement, gives a t = 0 NOx nearly identical to the case where only NOx, and not
CH3O2NO2 + NOx, is measured (Figure 1b). However, most studies, including the ones that are corrected post
hoc here (Huntrieser et al., 2007, 2009, 2011; Schumann & Huntrieser, 2007), use NOmeasurements, which do
not exhibit interference from CH3O2NO2, and calculate the NO2 mixing ratios; thus, we use the 3 h lifetime for
the following analysis.

These prior studies, reviewed by Schumann and Huntrieser (2007), using a 2–8 day lifetime, report an average
value of 250 mol NO flash�1 but with a significant range of values, including some as low as 20 mol flash�1. If
we reinterpret these studies’ observations, using equation (1) with a 3 h chemical lifetime, the emission rate
derived is approximately independent of time between lightning and the observation of the associated NOx

(Figures 1c–1d) and is more consistent with methods using far-field observations to constrain models.
Emission rates derived from this revised analysis are in the range of 510 and 550 mol NO flash�1, for tropics
and midlatitudes, respectively (Figure 1d and Table S4). This is approximately a factor of 2 increase in values
normally determined for mean LNOx emission rates per flash determined in the near field of thunderstorms
(Table S4) (Schumann & Huntrieser, 2007). This reduces the occurrence of very lowmol NO flash�1 values, and
thus the spread in global LNOx emission estimates, as the lower bound of 2 Tg N yr�1 is mainly derived from
these near-field analyses. Given the spread and uncertainty in the time since LNOx emissions in the various

Figure 1. (a) Time series of NOx (grey) and XNOx (NOx + CH3O2NO2, green) during DC3 21 June 2012 flight. (b) Average
calculated NOx (grey) and XNOx (NOx + CH3O2NO2, both green) at t = 0 at 1:35 PM using equation (1). The difference
between dark green and light green is assuming τ = 4.5 h (accounting for CH3O2NO2 interference) and τ = 3 h (not
accounting for CH3O2NO2 interference). (c) Mol NO flash�1 calculated by Huntrieser et al. (2009) (black) using an assumed
lifetime of ~2 days. The mol NO flash�1 (red) corresponds to the measured values calculated using a 3 h UT NOx chemical
lifetime. (d) The median tropical and midlatitude mol NO flash�1 (Huntrieser et al., 2009; Schumann & Huntrieser, 2007).
The values calculated using an assumed ~ 2 day lifetime (black) and a 3 h chemical UT NOx lifetime (red), and the error bars
represent the range of time between emission and measurements from prior studies used to calculate the median
mol NO flash�1 (Huntrieser et al., 2009; Schumann & Huntrieser, 2007). Error bars for the uncorrected values in Figure 1d are
not shown, as they are less than 5 mol NO flash�1 when assuming a 2 day lifetime. For both Figures 1c and 1d, the dash
dotted lines mark the tropical (260 mol NO flash�1) and midlatitude (500 mol NO flash�1) values used in the standard
GEOS-Chem model and the solid blue lines are the values we recommend from this study.
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studies, as indicated by the uncertainty in Figure 1d, the emission rate may be even higher (as high
as 800 mol NO flash�1).

3.3. Effects of Updated Chemistry on Interpretation of Far-Field Studies

Prior studies (Allen et al., 2010, 2012; Fang et al., 2010; Hudman et al., 2007; Martin et al., 2007; Martini et al.,
2011), focusing on far-field concentrations, have recognized that it is difficult to simultaneously match both
UT NOx and HNO3 observations. These studies chose an optimal value of 500 mol NO flash�1 for mean LNOx

per flash (Table S4), which yields model concentrations at the lower end of the observed NOx and the upper
end of the observed HNO3 (Figure S5).

In the southeastern United States (Figure 2), the region of the model most strongly affected by lightning
(Hudman et al., 2007), our revised model has 11% lower UT HNO3 mixing ratios than the base case, while
the UT NOx mixing ratios and tVCDNO2 increase by 5% and 10%, respectively. With the revised chemistry
(Figures 3 and S6), we find that increasing the mean LNOx emissions per flash by 33% to
665 mol NO flash�1 in the model leads to better agreement between the modeled and measured NOx

and similar agreement to HNO3 as in prior studies. We find that UT HNO3 observations are now predicted
to be 54% higher than the observations, while NOx is predicted to be within 10% of in situ.

Using this analysis in the southeast U.S., where we have in situ observations as a base for optimizing the
model, we then compare to the global products available for OMI, the NASA SP v2 and the KNMI DOMINO
product. Our model-satellite comparisons make use of averaging kernels (Boersma et al., 2016; Eskes &
Boersma, 2003), so the comparisons are insensitive to the choice of a priori profiles in the retrieval. While a
number of studies validating OMI tVCDNO2 products using aircraft- or ground-based measurements or mod-
els have been done (Bucsela et al., 2008; Hains et al., 2010; Ialongo et al., 2016; Lamsal et al., 2010, 2014;
Oetjen et al., 2013; Russell et al., 2011), they have mixed results on which product is more accurate, and no

Figure 2. All results are from the simulations. Base case (a) UT NOx, (b) tropospheric NO2 column density (tVCD NO2), and
(c) UT HNO3, where UT is defined as 200–350 hPa (defined in Table S1) between May and June 2012. Percent changes
(updated chemistry - base)/updated chemistry (d) UT NOx, (e) tVCD NO2, and (f) UT HNO3. The tVCDNO2 is averaged
between 12:00 and 14:00 local time, and the UT NOx and HNO3 are averaged between 16:00 and 20:00 local time. Grey box
in Figure 2a highlights the region with high LNOx emissions.
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single study evaluates the versions of both the SP and DOMINO product used in this work; therefore, we use
both products. The NASA SPv3 based on the revised slant columns described in Marchenko et al. (2015) was
released after this analysis was completed. Krotkov et al. (2017) indicates that estimates of lightning NOx

production efficiency will not change significantly with the new product.

Figure 3c shows that, in a direct comparison, the updated chemistry improves model-satellite agreement in
three of four regions, although the +33% emission increase worsens the agreement in all regions. Previous
studies (e.g., Travis et al., 2016) have identified differences between modeled and observed NO2:NOx ratios
in the UT. We therefore adjust the GEOS-Chem profiles to the average NO2:NOx ratio observed during DC3
(Figure S7) for Figure 3d; with this, the two retrievals bracket a model/satellite ratio of one in three of four
regions. In general, the satellite data support a 33% increase in lightning NOx emissions, especially in the
Northern Hemisphere, though a smaller increase in the Southern Hemisphere may be indicated. This
highlights the importance of further investigation into regionally specific lightning emissions. Assuming
similar NO2:NOx ratios in all regions, satellite-model comparisons support an annual production of 8.3–
9.0 Tg N yr�1 from lightning; the lower value assumes the increase only in the Northern Hemisphere, the
upper one globally.

The prior results were for grid-scale chemistry, and as previously mentioned, AN chemistry is subgrid. We take
this chemistry into consideration, here, post hoc. Nault et al. (2016) observed ~40 pptv of ANs produced ~2 h
downwind from deep convection; GEOS-Chem captures ~10 pptv of this production. We apply a post hoc
correction here by removing 30 pptv from the modeled NOx and HNO3 concentrations in pixels affected
by lightning to represent possible repartitioning to ANs. We find that this post hoc correction, to the

Figure 3. (a) Ratio of modeled and observed UT NOx from Martini et al. (2011), base case, updated chemistry case, and
updated chemistry with +33% LNOx case (Table S1). (b) Ratio of modeled and observed UT HNO3 from Martini et al.
(2011), base case, updated case, and updated +33% case. Dash-dotted line represents the upper 1σ limit of observations in
Martini et al. (2011) or during DC3. The NOx and HNO3 observations from Martini et al. (2011) have been corrected for
thermal decomposition of CH3O2NO2 and HO2NO2, as suggested by Bertram et al. (2007) and Browne et al. (2011). The
comparison with observations for the base, updated, and updated +33% case is from DC3. (c) Comparison of tropospheric
NO2 column density versus base case (black), updated case (blue), and updated +33% case (red) for South America (S. Am.),
Southern Africa (S. Af.), Northern Africa (N. Af), and Southeast Asia (SE Asia). Diamonds and triangles are the NASA SPv2
(Bucsela et al., 2013) (SP) and DOMINOv2 (Boersma et al., 2011b) (DOM) NO2 retrievals, respectively. The regions and time
periods are defined in Table S2. The different cases are defined in Table S1. (d) As in Figure 3c but with GEOS-Chem profiles
adjusted to NO2:NOx ratios observed during DC3.
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updated chemistry case (without adjusting the lightning emissions), decreases NOx, resulting in concentra-
tions that are ~30% lower than DC3 observations and HNO3 that is within 20% of DC3 observations
(Figure S6). Applying this correction to the updated chemistry case with increased lighting emissions, we find
that NOx is ~10% lower than observations, while HNO3 is still within the 1σ spread of the observations. Thus, if
this estimate of the effect of ANs chemistry is representative of regional phenomena, then an additional
5–10% increase in emissions to at least 700 mol NO flash�1 would be required to yield modeled NOx concen-
trations within 5% of DC3 observations.

4. Discussion

We identify that the UT NOx lifetime near lightning is a key aspect contributing to current discrepancies
between the near- and far-field studies of mean LNOx emission rates per flash and a major contributor to
the factor of 4 range in the emission rates that has been observed using different methods of data analysis
(Schumann & Huntrieser, 2007). As demonstrated in Figure 1, once the UT NOx lifetime is accounted for,
two different approaches produce similar results for the mol NO flash�1. After reevaluating the mean LNOx

emission rates per flash for the near-field studies and assuming 44 lightning flashes per second (Huntrieser
et al., 2009), this would lead to ~9–10 Tg N yr�1, which is similar to the total value calculated in the updated
GEOS-Chem model run constrained by far-field studies (Table S4), assuming a global increase. This demon-
strates that both the greater mol flash�1 and the updated chemistry are necessary to optimize the agreement
between models and observations. Additionally, this reduced spread in emission rates should greatly
decrease the current differences among models and between models and measurements (Table S4).

Measurements of NOy can also be utilized to circumvent the rapid UT NOx chemistry to determine lightning N
emission rate. In the near field of LNOx emissions, NOx is a large fraction of the total NOy budget—up to 70–
80% (Huntrieser et al., 2009, 2011). As NOx rapidly oxidizes, total NOy remains conserved, meaning that a mea-
surement of total NOy would provide a more useful constraint for lightning N emissions without needing
prior knowledge or calculations of the NOx chemistry and lifetime. For example, Nault et al. (2016) observed
nearly complete closure between the rapid loss of NOx (2.6 × 105 molecules/cm3/s) and production of its
higher oxide species (2.3 × 105 molecules/cm3/s), demonstrating both the aforementioned rapid loss of
NOx in the first 3 h downwind from LNOx emissions (as discussed throughout this paper) and the conserva-
tion of NOy. Using the NOy measurements in these two studies, we calculate 400 (Huntrieser et al., 2009) and
479 (Huntrieser et al., 2011) NO mol flash�1. This would correspond to 7–9 Tg N yr�1 from lightning. This
further indicates that the mean LNOx emission rates per flash have been underpredicted and NOy, when
available, is a better measurement to calculate mean LNOx emission rates per flash. However, measurement
of total NOy cannot be achieved from space-based platforms; therefore, accurate knowledge of the partition-
ing of NOx to its higher oxides remains important for space-based near-field studies.

Another compound impacted by the increased LNOx emission rates is UT O3, an important greenhouse gas
(Myre et al., 2013). The increased LNOx emissions increase modeled UT O3, which increases the differences
between observed and modeled UT O3 (Figure S8). Though investigating all the mechanisms that lead to this
discrepancy betweenmodel and observations is beyond the scope of this paper, we speculate that the bias is
due to subgrid effects of water vapor transport (Sauvage et al., 2007). The modeled water vapor mixing ratios
are higher (by as much as 100%) than observed during DC3 (Figure S9). Since water is a key term in O3

production, correcting this bias would likely improve the representation of UT O3.

5. Conclusions

Utilizing the recent updates, including rapid CH3O2NO2 and ANs production, in UT NOx lifetime and fate
improves our understanding of mean lightning NOx (LNOx) emission rates per flash. Incorporating these
updates into a global chemical transport model, we find that the mean LNOx emission rates per flash should
increase by 23–33% to better match in situ measurements of NOx and HNO3 and satellite measurements of
tVCDNO2. The increase in inferred emissions stems from (a) the updated chemistry that decreases UT HNO3,
preventing the prior model overestimate of UT HNO3 from limiting mean LNOx emission rates per flash, and
(b) from using a consistent, short NOx lifetime instead of the one assumed in prior studies. This reduces the
discrepancy of LNOx among previous analyses.
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